Background
A wind turbine is a machine that converts the wind's kinetic energy into rotary mechanical energy, which is then used to do work. In more advanced models, the rotational energy is converted into electricity, the most versatile form of energy, by using a generator.
For thousands of years people have used windmills to pump water or grind grain. Even into the twentieth century tall, slender, multi-vaned wind turbines made entirely of metal were used in American homes and ranches to pump water into the house's plumbing system or into the cattle's watering trough. After World War I, work was begun to develop wind turbines that could produce electricity. Marcellus Jacobs invented a prototype in 1927 that could provide power for a radio and a few lamps but little else. When demand for electricity increased later, Jacobs's small, inadequate wind turbines fell out of use.
The first large-scale wind turbine built in the United States was conceived by Palmer Cosslett Putnam in 1934; he completed it in 1941. The machine was huge. The tower was 36.6 yards (33.5 meters) high, and its two stainless steel blades had diameters of 58 yards (53 meters). Putnam's wind turbine could produce 1,250 kilowatts of electricity, or enough to meet the needs of a small town. It was, however, abandoned in 1945 because of mechanical failure.
With the 1970s oil embargo, the United States began once more to consider the feasibility of producing cheap electricity from wind turbines. In 1975 the prototype Mod-O was in operation. This was a 100 kilowatt turbine with two 21-yard (19-meter) blades. More prototypes followed (Mod-OA, Mod-1, Mod-2, etc.), each larger and more powerful than the one before. Currently, the United States Department of Energy is aiming to go beyond 3,200 kilowatts per machine.
Many different models of wind turbines exist, the most striking being the vertical-axis Darrieus, which is shaped like an egg beater. The model most supported by commercial manufacturers, however, is a horizontal-axis turbine, with a capacity of around 100 kilowatts and three blades not more than 33 yards (30 meters) in length. Wind turbines with three blades spin more smoothly and are easier to balance than those with two blades. Also, while larger wind turbines produce more energy, the smaller models are less likely to undergo major mechanical failure, and thus are more economical to maintain.
Wind farms have sprung up all over the United States, most notably in California. Wind farms are huge arrays of wind turbines set in areas of favorable wind production. The great number of interconnected wind turbines is necessary in order to produce enough electricity to meet the needs of a sizable population. Currently, 17,000 wind turbines on wind farms owned by several wind energy companies produce 3.7 billion kilowatt-hours of electricity annually, enough to meet the energy needs of 500,000 homes.
Raw Materials
A wind turbine consists of three basic parts: the tower, the nacelle, and the rotor blades. The tower is either a steel lattice tower similar to electrical towers or a steel tubular tower with an inside ladder to the nacelle. Most towers do not have guys, which are cables used for support, and most are made of steel that has been coated with a zinc alloy for protection, though some are painted instead. The tower of a typical American-made turbine is approximately 80 feet tall and weighs about 19,000 pounds.
The nacelle is a strong, hollow shell that contains the inner workings of the wind turbine. Usually made of fiberglass, the nacelle contains the main drive shaft and the gearbox. It also contains the blade pitch control, a hydraulic system that controls the angle of the blades, and the yaw drive, which controls the position of the turbine relative to the wind. The generator and electronic controls are standard equipment whose main components are steel and copper. A typical nacelle for a current turbine weighs approximately 22,000 pounds.
The most diverse use of materials and the most experimentation with new materials occur with the blades. Although the most dominant material used for the blades in commercial wind turbines is fiberglass with a hollow core, other materials in use include lightweight woods and aluminum. Wooden blades are solid, but most blades consist of a skin surrounding a core that is either hollow or filled with a lightweight substance such as plastic foam or honeycomb, or balsa wood. A typical fiberglass blade is about 15 meters in length and weighs approximately 2,500 pounds.
Wind turbines also include a utility box, which converts the wind energy into electricity and which is located at the base of the tower. Various cables connect the utility box to the nacelle, while others connect the whole turbine to nearby turbines and to a transformer.
The Manufacturing
Process
Before consideration can be given to the construction of individual wind turbines, manufacturers must determine a proper area for the siting of wind farms. Winds must be consistent, and their speed must be regularly over 15.5 miles per hour (25 kilometers per hour). If the winds are stronger during certain seasons, it is preferred that they be greatest during periods of maximum electricity use. In California's Altamont Pass, for instance, site of the world's largest wind farm, wind speed peaks in the summer when demand is high. In some areas of New England where wind farms are being considered, winds are strongest in the winter, when the need for heating increases the consumption of electrical power. Wind farms work best in open areas of slightly rolling land surrounded by mountains. These areas are preferred because the wind turbines can be placed on ridges and remain unobstructed by trees and buildings, and the mountains concentrate the air flow, creating a natural wind tunnel of stronger, faster winds. Wind farms must also be placed near utility lines to facilitate the transfer of the electricity to the local power plant.
Preparing the site
Wherever a wind farm is to be built, the roads are cut to make way for transporting parts. At each wind turbine location, the land is graded and the pad area is leveled. A concrete foundation is then laid into the ground, followed by the installation of the underground cables. These cables connect the wind turbines to each other in series, and also connect all of them to the remote control center, where the wind farm is monitored and the electricity is sent to the power company.
Erecting the tower
Although the tower's steel parts are manufactured off site in a factory, they are usually assembled on site. The parts are bolted together before erection, and the tower is kept horizontal until placement. A crane lifts the tower into position, all bolts are tightened, and stability is tested upon completion.
Nacelle
The fiberglass nacelle, like the tower, is manufactured off site in a factory. Unlike the tower, however, it is also put together in the factory. Its inner workings—main drive shaft, gearbox, and blade pitch and yaw controls—are assembled and then mounted onto a base frame. The nacelle is then bolted around the equipment. At the site, the nacelle is lifted onto the completed tower and bolted into place.
Rotary blades
Aluminum blades are created by bolting sheets of aluminum together, while wooden blades are carved to form an aerodynamic propeller similar in cross-section to an airplane wing.
By far the greatest number of blades, however, are formed from fiberglass. The manufacture of fiberglass is a painstaking operation. First, a mold that is in two halves like a clam shell, yet shaped like a blade, is prepared. Next, a fiberglass-resin composite mixture is applied to the inner surfaces of the mold, which is then closed. The fiberglass mixture must then dry for several hours; while it does, an air-filled bladder within the mold helps the blade keep its shape. After the fiberglass is dry, the mold is then opened and the bladder is removed. Final preparation of the blade involves cleaning, sanding, sealing the two halves, and painting.
The blades are usually bolted onto the nacelle after it has been placed onto the tower. Because assembly is easier to accomplish on the ground, occasionally a three-pronged blade has two blades bolted onto the nacelle before it is lifted, and the third blade is bolted on after the nacelle is in place.
Installation of control systems
The utility box for each wind turbine and the electrical communication system for the wind farm is installed simultaneously with the placement of the nacelle and blades. Cables run from the nacelle to the utility box and from the utility box to the remote control center.
Quality Control
Unlike most manufacturing processes, production of wind turbines involves very little concern with quality control. Because mass production of wind turbines is fairly new, no standards have been set. Efforts are now being made in this area on the part of both the government and manufacturers.
While wind turbines on duty are counted on to work 90 percent of the time, many structural flaws are still encountered, particularly with the blades. Cracks sometimes appear soon after manufacture. Mechanical failure because of alignment and assembly errors is common. Electrical sensors frequently fail because of power surges. Non-hydraulic brakes tend to be reliable, but hydraulic braking systems often cause problems. Plans are being developed to use existing technology to solve these difficulties.
Wind turbines do have regular maintenance schedules in order to minimize failure. Every three months they undergo inspection, and every six months a major maintenance checkup is scheduled. This usually involves lubricating the moving parts and checking the oil level in the gearbox. It is also possible for a worker to test the electrical system on site and note any problems with the generator or hookups.
Environmental Benefits
and Drawbacks
A wind turbine that produces electricity from inexhaustible winds creates no pollution. By comparison, coal, oil, and natural gas produce one to two pounds of carbon dioxide (an emission that contributes to the greenhouse effect and global warming) per kilowatt-hour produced. When wind energy is used for electrical needs, dependence on fossil fuels for this purpose is reduced. The current annual production of electricity by wind turbines (3.7 billion kilowatt-hours) is equivalent to four million barrels of oil or one million tons of coal.
Wind turbines are not completely free of environmental drawbacks. Many people consider them to be unaesthetic, especially when huge wind farms are built near pristine wilderness areas. Bird kills have been documented, and the whirring blades do produce quite a bit of noise. Efforts to reduce these effects include selecting sites that do not coincide with wilderness areas or bird migration routes and researching ways to reduce noise.
The Future
The future can only get better for wind turbines. The potential for wind energy is largely untapped. The United States Department of Energy estimates that ten times the amount of electricity currently being produced can be achieved by 1995. By 2005, seventy times current production is possible. If this is accomplished, wind turbines would account for 10 percent of the United States' electricity production.
Research is now being done to increase the knowledge of wind resources. This involves the testing of more and more areas for the possibility of placing wind farms where the wind is reliable and strong. Plans are in effect to increase the life span of the machine from five years to 20 to 30 years, improve the efficiency of the blades, provide better controls, develop drive trains that last longer, and allow for better surge protection and grounding. The United States Department of Energy has recently set up a schedule to implement the latest research in order to build wind turbines with a higher efficiency rating than is now possible. (The efficiency of an ideal wind turbine is 59.3 percent. That is, 59.3 percent of the wind's energy can be captured. Turbines in actual use are about 30 percent efficient.) The United States Department of Energy has also contracted with three corporations to research ways to reduce mechanical failure. This project began in the spring of 1992 and will extend to the end of the century.
Wind turbines will become more prevalent in upcoming years. The largest manufacturer of wind turbines in the world, U.S. Windpower, plans to expand from 420 megawatt capacity (4,200 machines) to 800 megawatts (8,000 machines) by 1995. They plan to have 2,000 megawatts (20,000 machines) by the year 2000. Other wind turbine manufacturers also plan to increase the numbers produced. International committees composed of several industrialized nations have formed to discuss the potential of wind turbines. Efforts are also being made to provide developing countries with small wind turbines similar to those Marcellus Jacobs built in the 1920s. Denmark, which already produces 70 percent to 80 percent of Europe's wind power, is developing plans to expand manufacture of wind turbines. The turn of the century should see wind turbines that are properly placed, efficient, durable, and numerous.
Friday, April 4, 2008
Nuclear Power
The use of nuclear power to generate electricity began in the late 1950s. At the close of the twentieth century, nuclear power was supplying about 20 percent of the electricity generated in the United States and about 16 percent worldwide.
Nuclear power has been the most controversial of all energy sources. Public concerns about reactor safety and environmental issues were especially heightened by the 1979 accident at Three Mile Island in Pennsylvania and the much more serious accident in 1986 at Chernobyl in Ukraine. Construction of new nuclear power plants has slowed considerably since then, and some industrialized countries may abandon this energy source. Concerns about disposal of spent nuclear fuel have also affected public confidence in nuclear power. Although many scientists believe that spent fuel and other highly radioactive wastes can be disposed of safely in a geologic repository located far below ground, disposal sites for these wastes have not been approved, and the need to store spent fuel until disposal facilities are available raises safety and environmental concerns. The public also has not supported development of new disposal facilities for low-level radioactive wastes generated at nuclear power plants and in many other commercial activities. Other factors contributing to public concerns have included environmental problems at sites operated under nuclear weapons programs and fears that plutonium produced at nuclear power plants could be diverted for use in nuclear weapons.
Public concerns about safety and environmental issues have been exacerbated by financial risks in the nuclear power industry, including the high cost of constructing and operating nuclear power plants, potentially high costs of decommissioning nuclear facilities, and costs for storage and disposal of spent fuel and other nuclear wastes. Nuclear power may not remain competitive with other energy sources unless these costs are reduced.
Proponents of nuclear power emphasize its significant benefits. Past accidents notwithstanding, the nuclear power industry has an enviable safety record in those industrialized countries that require extensive reactor safety systems. Uranium used in nuclear fuel is abundant, which reduces dependence on foreign energy supplies and preserves oil and natural gas for essential uses. Nuclear reactors produce the greatest amount of energy per amount of fuel of any nonrenewable energy source, and the environmental damage from use of nuclear power is less than with other major energy sources, especially coal. Perhaps most importantly, the use of nuclear power in place of coal, oil, and natural gas greatly reduces emissions of carbon dioxide, which is believed to be a factor in global warming, and other hazardous air pollutants.
Given these benefits, many energy experts believe that nuclear power is an important energy source for the future. A major challenge will be to address public concerns about safety and environmental issues. The keys to meeting this challenge may include resolving concerns about nuclear waste disposal, siting of new reactors in remote areas, developing smaller reactors that incorporate passive safety systems, and using standard power plant designs to lower construction and operating costs.
Nuclear power has been the most controversial of all energy sources. Public concerns about reactor safety and environmental issues were especially heightened by the 1979 accident at Three Mile Island in Pennsylvania and the much more serious accident in 1986 at Chernobyl in Ukraine. Construction of new nuclear power plants has slowed considerably since then, and some industrialized countries may abandon this energy source. Concerns about disposal of spent nuclear fuel have also affected public confidence in nuclear power. Although many scientists believe that spent fuel and other highly radioactive wastes can be disposed of safely in a geologic repository located far below ground, disposal sites for these wastes have not been approved, and the need to store spent fuel until disposal facilities are available raises safety and environmental concerns. The public also has not supported development of new disposal facilities for low-level radioactive wastes generated at nuclear power plants and in many other commercial activities. Other factors contributing to public concerns have included environmental problems at sites operated under nuclear weapons programs and fears that plutonium produced at nuclear power plants could be diverted for use in nuclear weapons.
Public concerns about safety and environmental issues have been exacerbated by financial risks in the nuclear power industry, including the high cost of constructing and operating nuclear power plants, potentially high costs of decommissioning nuclear facilities, and costs for storage and disposal of spent fuel and other nuclear wastes. Nuclear power may not remain competitive with other energy sources unless these costs are reduced.
Proponents of nuclear power emphasize its significant benefits. Past accidents notwithstanding, the nuclear power industry has an enviable safety record in those industrialized countries that require extensive reactor safety systems. Uranium used in nuclear fuel is abundant, which reduces dependence on foreign energy supplies and preserves oil and natural gas for essential uses. Nuclear reactors produce the greatest amount of energy per amount of fuel of any nonrenewable energy source, and the environmental damage from use of nuclear power is less than with other major energy sources, especially coal. Perhaps most importantly, the use of nuclear power in place of coal, oil, and natural gas greatly reduces emissions of carbon dioxide, which is believed to be a factor in global warming, and other hazardous air pollutants.
Given these benefits, many energy experts believe that nuclear power is an important energy source for the future. A major challenge will be to address public concerns about safety and environmental issues. The keys to meeting this challenge may include resolving concerns about nuclear waste disposal, siting of new reactors in remote areas, developing smaller reactors that incorporate passive safety systems, and using standard power plant designs to lower construction and operating costs.
Solar power tower
The solar power tower (also known as 'Central Tower' power plants or 'Heliostat' power plants or power towers) is a type of solar furnace using a tower to receive the focused sunlight. It uses an array of flat, movable mirrors (called heliostats) to focus the sun's rays upon a collector tower (the target). The high energy at this point of concentrated sunlight is transferred to a substance that can store the heat for later use. The most recent heat transfer material that has been successfully demonstrated is liquid sodium. Sodium is a metal with a high heat capacity, allowing that energy to be stored and drawn off throughout the evening. That energy can, in turn, be used to boil water for use in steam turbines. Water had originally been used as a heat transfer medium in earlier power tower versions (where the resultant steam was used to power a turbine). This system did not allow for power generation during the evening.
Examples of heliostat based power plants were the 10 MWe Solar One and Solar Two demonstration projects in the Mojave Desert, which have now been decommissioned. The 15 MW Solar Tres Power Tower in Spain builds on these projects. In Spain the 11 MW PS10 solar power tower was recently completed. In South Africa, a solar power plant is planned with 4000 to 5000 heliostat mirrors, each having an area of 140 m².
An alternative design is a pyramid shaped structure called solar pyramid, which works by drawing in air, heating it with solar energy and moving it through turbines to generate electricity. Currently India is building such pyramids.
Examples of heliostat based power plants were the 10 MWe Solar One and Solar Two demonstration projects in the Mojave Desert, which have now been decommissioned. The 15 MW Solar Tres Power Tower in Spain builds on these projects. In Spain the 11 MW PS10 solar power tower was recently completed. In South Africa, a solar power plant is planned with 4000 to 5000 heliostat mirrors, each having an area of 140 m².
An alternative design is a pyramid shaped structure called solar pyramid, which works by drawing in air, heating it with solar energy and moving it through turbines to generate electricity. Currently India is building such pyramids.
Electrical generator
In electricity generation, an electrical generator is a device that converts kinetic energy to electrical energy, generally using electromagnetic induction. The reverse conversion of electrical energy into mechanical energy is done by a motor, and motors and generators have many similarities. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, or any other source of mechanical energy.
Dynamo
The Dynamo was the first electrical generator capable of delivering power for industry. The dynamo uses electromagnetic principles to convert mechanical rotation into a pulsing direct electric current through the use of a commutator. A dynamo machine consists of a stationary structure, which provides a constant magnetic field, and a set of rotating windings which turn within that field. On small machines the constant magnetic field may be provided by one or more permanent magnets; larger machines have the constant magnetic field provided by one or more electromagnets, which are usually called field coils.
The first dynamo based on Faraday's principles was built in 1832 by Hippolyte Pixii, a French instrument maker. It used a permanent magnet which was rotated by a crank. The spinning magnet was positioned so that its north and south poles passed by a piece of iron wrapped with wire. Pixii found that the spinning magnet produced a pulse of current in the wire each time a pole passed the coil. Furthermore, the north and south poles of the magnet induced currents in opposite directions. By adding a commutator, Pixii was able to convert the alternating current to direct current.
Unlike the Faraday disc, many turns of wire connected in series can be used in the moving windings of a dynamo. This allows the terminal voltage of the machine to be higher than a disc can produce, so that electrical energy can be delivered at a convenient voltage.
The relationship between mechanical rotation and electric current in a dynamo is reversible; the principles of the electric motor were discovered when it was found that one dynamo could cause a second interconnected dynamo to rotate if current was fed through it.
The transformative ability of a dynamo to change energy from electrical power to mechanical power and back again could be exploited as a current-compensation and balancing device to even out power distribution on interconnected, unbalanced circuits.
Concepts
The generator moves an electric current, but does not create electric charge, which is already present in the conductive wire of its windings. It is somewhat analogous to a water pump, which creates a flow of water but does not create the water inside. Other types of electrical generators exist, based on other electrical phenomena such as piezoelectricity, and magnetohydrodynamics. The construction of a dynamo is similar to that of an electric motor, and all common types of dynamos could work as motors.
Excitation
A generator that uses field coils instead of permanent magnets requires a current flow to be present in the field coils for the generator to be able to produce any power at all. If the field coils are not powered, the rotor can spin without the generator producing any usable electrical energy.
For older and very large power generating equipment, it has been traditionally necessary for a small separate exciter generator to be operated in conjunction with the main power generator. This is a small permanent-magnet generator which produces the constant current flow necessary for the larger generator to function.
Most modern generators with field coils feature a capability known as self-excitation where some of the power output from the rotor is diverted to power the field coils. Additionally the rotor or stator contains a small amount of magnetizable metal, which retains a very weak residual magnetism when the generator is turned off. The generator is turned on with no load connected, and the initial weak field creates a weak flow in the field coils, which in turn begins to slightly affect the rotor to begin to produce current that then further strengthens the field. This feedback loop continues to increase field voltage and output power until the generator reaches its full operating output level.
This initial self-excitation feedback process does not work if the generator is started connected to a load, as the load will quickly dissipate the slight power production of the initial field buildup process.
It is additionally possible for a self-exciting generator either turned off or started with a load connected to result in dissipation of the residual magnetic field, resulting in complete non-function of the generator. In the case of a 220v portable generator commonly used by consumers and construction contractors, this loss of the residual field can usually be remedied by shutting down the generator, disconnecting all loads, and connecting what are normally the high-voltage/amperage generator outputs to the terminals of a common 9-volt battery. This very small current flow from the battery (in comparison with normal generator output) is enough to restore the residual self-exciting magnetic field. Usually only a moment of current flow, just briefly touching across the battery terminals, is enough to restore the field.
Terminology
The parts of a dynamo or related equipment can be expressed in either mechanical terms or electrical terms. Although distinctly separate, these two sets of terminology are frequently used interchangeably or in combinations that include one mechanical term and one electrical term. This causes great confusion when working with compound machines such as a brushless alternator or when conversing with people who work on a machine that is configured differently than the machines that the speaker is used to.
Mechanical
Rotor: The rotating part of an alternator, generator, dynamo or motor.
Stator: The stationary part of an alternator, generator, dynamo or motor.
Electrical
Armature: The power-producing component of an alternator, generator, dynamo or motor. The armature can be on either the rotor or the stator.
Field: The magnetic field component of an alternator, generator, dynamo or motor. The magnetic field of the dynamo or alternator can be provided by either electromagnets or permanent magnets mounted on either the rotor or the stator.
Dynamo
The Dynamo was the first electrical generator capable of delivering power for industry. The dynamo uses electromagnetic principles to convert mechanical rotation into a pulsing direct electric current through the use of a commutator. A dynamo machine consists of a stationary structure, which provides a constant magnetic field, and a set of rotating windings which turn within that field. On small machines the constant magnetic field may be provided by one or more permanent magnets; larger machines have the constant magnetic field provided by one or more electromagnets, which are usually called field coils.
The first dynamo based on Faraday's principles was built in 1832 by Hippolyte Pixii, a French instrument maker. It used a permanent magnet which was rotated by a crank. The spinning magnet was positioned so that its north and south poles passed by a piece of iron wrapped with wire. Pixii found that the spinning magnet produced a pulse of current in the wire each time a pole passed the coil. Furthermore, the north and south poles of the magnet induced currents in opposite directions. By adding a commutator, Pixii was able to convert the alternating current to direct current.
Unlike the Faraday disc, many turns of wire connected in series can be used in the moving windings of a dynamo. This allows the terminal voltage of the machine to be higher than a disc can produce, so that electrical energy can be delivered at a convenient voltage.
The relationship between mechanical rotation and electric current in a dynamo is reversible; the principles of the electric motor were discovered when it was found that one dynamo could cause a second interconnected dynamo to rotate if current was fed through it.
The transformative ability of a dynamo to change energy from electrical power to mechanical power and back again could be exploited as a current-compensation and balancing device to even out power distribution on interconnected, unbalanced circuits.
Concepts
The generator moves an electric current, but does not create electric charge, which is already present in the conductive wire of its windings. It is somewhat analogous to a water pump, which creates a flow of water but does not create the water inside. Other types of electrical generators exist, based on other electrical phenomena such as piezoelectricity, and magnetohydrodynamics. The construction of a dynamo is similar to that of an electric motor, and all common types of dynamos could work as motors.
Excitation
A generator that uses field coils instead of permanent magnets requires a current flow to be present in the field coils for the generator to be able to produce any power at all. If the field coils are not powered, the rotor can spin without the generator producing any usable electrical energy.
For older and very large power generating equipment, it has been traditionally necessary for a small separate exciter generator to be operated in conjunction with the main power generator. This is a small permanent-magnet generator which produces the constant current flow necessary for the larger generator to function.
Most modern generators with field coils feature a capability known as self-excitation where some of the power output from the rotor is diverted to power the field coils. Additionally the rotor or stator contains a small amount of magnetizable metal, which retains a very weak residual magnetism when the generator is turned off. The generator is turned on with no load connected, and the initial weak field creates a weak flow in the field coils, which in turn begins to slightly affect the rotor to begin to produce current that then further strengthens the field. This feedback loop continues to increase field voltage and output power until the generator reaches its full operating output level.
This initial self-excitation feedback process does not work if the generator is started connected to a load, as the load will quickly dissipate the slight power production of the initial field buildup process.
It is additionally possible for a self-exciting generator either turned off or started with a load connected to result in dissipation of the residual magnetic field, resulting in complete non-function of the generator. In the case of a 220v portable generator commonly used by consumers and construction contractors, this loss of the residual field can usually be remedied by shutting down the generator, disconnecting all loads, and connecting what are normally the high-voltage/amperage generator outputs to the terminals of a common 9-volt battery. This very small current flow from the battery (in comparison with normal generator output) is enough to restore the residual self-exciting magnetic field. Usually only a moment of current flow, just briefly touching across the battery terminals, is enough to restore the field.
Terminology
The parts of a dynamo or related equipment can be expressed in either mechanical terms or electrical terms. Although distinctly separate, these two sets of terminology are frequently used interchangeably or in combinations that include one mechanical term and one electrical term. This causes great confusion when working with compound machines such as a brushless alternator or when conversing with people who work on a machine that is configured differently than the machines that the speaker is used to.
Mechanical
Rotor: The rotating part of an alternator, generator, dynamo or motor.
Stator: The stationary part of an alternator, generator, dynamo or motor.
Electrical
Armature: The power-producing component of an alternator, generator, dynamo or motor. The armature can be on either the rotor or the stator.
Field: The magnetic field component of an alternator, generator, dynamo or motor. The magnetic field of the dynamo or alternator can be provided by either electromagnets or permanent magnets mounted on either the rotor or the stator.
The perfect engine: the turbine
The perfect engine: the turbine
Turbines are devices that spin in the presence of a moving fluid. The difference between water wheels or windmills and turbines is largely one of emphasis and degree. During the 18th and 19th centuries, much progress was made toward extracting the kinetic energy of flowing water by devising water turbines. Leonhard Euler, applying fluid mechanics, developed a water turbine as early as 1750. During the 18th century several engineers, such as BenĂ´it Fourneyron, succeeded in building water turbines that by far outstripped conventional water wheels by giving the blades special shapes. The term "turbine" was coined by Fourneyron's professor Claude Burdin; he derived the term from turbo, a spinning object.
The most useful turbines for many purposes are those that can be propelled with energy from heat. A typical turbine based on heat is the steam turbine. The idea of a steam turbine is much older than the steam engine itself. Around 60 bce the Alexandrian Greek Heron (a.k.a. Hero) used jets of steam to turn a kettle. In 1629 the Italian engineer Giovanni Branca depicted in his machine book Le Machine a steam turbine in which a jet of steam is directed at the vanes of the same sort of apparatus as a water wheel. No doubt others observed that escaping steam is like the rushing wind and could be used to push mills just as the wind powers windmills.
When practical steam engines were built at the start of the 18th century, however, they moved a cylinder back and forth (reciprocating motion) instead of pushing a wheel around, although they could be made to turn wheels with various ingenious mechanisms. Reciprocating steam engines were bulky, had slow rotation speeds, and wasted much energy in the machine itself to move the heavy pistons back and forth. When first used to drive electric generators, reciprocating steam engines proved difficult to maintain at a fixed rotation speed as the load on the generator changed.
Turbines are as simple as reciprocating engines are complex. Because they have essentially only one moving part, they are sometimes called the perfect engines, almost directly turning heat into rotary motion.
The first to build a steam turbine was the British engineer Charles Algernon Parsons. In 1884 he completed a small turbine that rotated at 18,000 revolutions per minute and that delivered 10 horsepower. The Swedish engineer Carl Gustav de Laval, experimenting with steam turbines, achieved greater power and higher rotation rates. In 1890 he built a turbine consisting of a 30-cm (12-in.) disk with 200 blades mounted on a flexible axis. The steam was admitted to the blades by special nozzles (Laval nozzles) that accelerated the steam to very high velocities, thus transferring the energy of the steam in the form of kinetic energy to the blades.
Theory of operation
A working fluid contains potential energy (pressure head) and kinetic energy (velocity head). The fluid may be compressible or incompressible. Several physical principles are employed by turbines to collect this energy:
Impulse turbines
These turbines change the direction of flow of a high velocity fluid jet. The resulting impulse spins the turbine and leaves the fluid flow with diminished kinetic energy. There is no pressure change of the fluid in the turbine rotor blades. Before reaching the turbine the fluid's pressure head is changed to velocity head by accelerating the fluid with a nozzle. Pelton wheels and de Laval turbines use this process exclusively. Impulse turbines do not require a pressure casement around the runner since the fluid jet is prepared by a nozzle prior to reaching turbine. Newton's second law describes the transfer of energy for impulse turbines.
Reaction turbines
These turbines develop torque by reacting to the fluid's pressure or weight. The pressure of the fluid changes as it passes through the turbine rotor blades. A pressure casement is needed to contain the working fluid as it acts on the turbine stage(s) or the turbine must be fully immersed in the fluid flow (wind turbines). The casing contains and directs the working fluid and, for water turbines, maintains the suction imparted by the draft tube. Francis turbines and most steam turbines use this concept. For compressible working fluids, multiple turbine stages may be used to harness the expanding gas efficiently. Newton's third law describes the transfer of energy for reaction turbines.
Turbine designs will use both these concepts to varying degrees whenever possible. Wind turbines use an airfoil to generate lift from the moving fluid and impart it to the rotor (this is a form of reaction). Wind turbines also gain some energy from the impulse of the wind, by deflecting it at an angle. Crossflow turbines are designed as an impulse machine, with a nozzle, but in low head applications maintain some efficiency through reaction, like a traditional water wheel. Turbines with multiple stages may utilize either reaction or impulse blading at high pressure. Steam Turbines are usually more impulse while Gas Turbines more reaction type designs. At low pressure the operating fluid medium expands in volume for small changes in pressure. Under these conditions (termed Low Pressure Turbines) blading becomes strictly a reaction type design with the base of the blade solely impulse. The reason is due to the effect of the rotation speed for each blade. As the volume increases, the blade height increases, and the base of the blade spins at a slower speed relative to the tip. This change in speed forces a designer to change from impulse at the base, to a high reaction style tip.
The design of steam turbines developed into a science near the end of the 19th century. Better materials allowed the construction of turbine blades that are resistant to corrosion. Charles Curtis developed the multistage turbine in which the blades and disks become progressively larger when the steam expands. Parsons developed in 1894 the ship turbine engine. The slow-revolving turbine consisted of several sections of increasing diameter. High-pressure steam is admitted to the turbine and pressure differences in each section drive the turbine blades. The first ship to be equipped with such a steam turbine, the Turbinia, immediately established a speed record with 31 knots (57.5 km or 35.7 mi per hour). During the early years of the 20th century, most reciprocating steam engines were replaced by steam turbines (or by diesels). Steam turbines can deliver much more power than reciprocating engines and need less maintenance. Steam turbines also supplanted marine steam engines on ships.
A similar evolution took place for large internal combustion engines, mainly driven by the need for lightweight and powerful airplane engines. Most large modern airplanes are now powered by either turboprop or turbojet engines. These turbines are spun by the expansion of jet fuel instead of by the expansion of water into steam.
Turbines are devices that spin in the presence of a moving fluid. The difference between water wheels or windmills and turbines is largely one of emphasis and degree. During the 18th and 19th centuries, much progress was made toward extracting the kinetic energy of flowing water by devising water turbines. Leonhard Euler, applying fluid mechanics, developed a water turbine as early as 1750. During the 18th century several engineers, such as BenĂ´it Fourneyron, succeeded in building water turbines that by far outstripped conventional water wheels by giving the blades special shapes. The term "turbine" was coined by Fourneyron's professor Claude Burdin; he derived the term from turbo, a spinning object.
The most useful turbines for many purposes are those that can be propelled with energy from heat. A typical turbine based on heat is the steam turbine. The idea of a steam turbine is much older than the steam engine itself. Around 60 bce the Alexandrian Greek Heron (a.k.a. Hero) used jets of steam to turn a kettle. In 1629 the Italian engineer Giovanni Branca depicted in his machine book Le Machine a steam turbine in which a jet of steam is directed at the vanes of the same sort of apparatus as a water wheel. No doubt others observed that escaping steam is like the rushing wind and could be used to push mills just as the wind powers windmills.
When practical steam engines were built at the start of the 18th century, however, they moved a cylinder back and forth (reciprocating motion) instead of pushing a wheel around, although they could be made to turn wheels with various ingenious mechanisms. Reciprocating steam engines were bulky, had slow rotation speeds, and wasted much energy in the machine itself to move the heavy pistons back and forth. When first used to drive electric generators, reciprocating steam engines proved difficult to maintain at a fixed rotation speed as the load on the generator changed.
Turbines are as simple as reciprocating engines are complex. Because they have essentially only one moving part, they are sometimes called the perfect engines, almost directly turning heat into rotary motion.
The first to build a steam turbine was the British engineer Charles Algernon Parsons. In 1884 he completed a small turbine that rotated at 18,000 revolutions per minute and that delivered 10 horsepower. The Swedish engineer Carl Gustav de Laval, experimenting with steam turbines, achieved greater power and higher rotation rates. In 1890 he built a turbine consisting of a 30-cm (12-in.) disk with 200 blades mounted on a flexible axis. The steam was admitted to the blades by special nozzles (Laval nozzles) that accelerated the steam to very high velocities, thus transferring the energy of the steam in the form of kinetic energy to the blades.
Theory of operation
A working fluid contains potential energy (pressure head) and kinetic energy (velocity head). The fluid may be compressible or incompressible. Several physical principles are employed by turbines to collect this energy:
Impulse turbines
These turbines change the direction of flow of a high velocity fluid jet. The resulting impulse spins the turbine and leaves the fluid flow with diminished kinetic energy. There is no pressure change of the fluid in the turbine rotor blades. Before reaching the turbine the fluid's pressure head is changed to velocity head by accelerating the fluid with a nozzle. Pelton wheels and de Laval turbines use this process exclusively. Impulse turbines do not require a pressure casement around the runner since the fluid jet is prepared by a nozzle prior to reaching turbine. Newton's second law describes the transfer of energy for impulse turbines.
Reaction turbines
These turbines develop torque by reacting to the fluid's pressure or weight. The pressure of the fluid changes as it passes through the turbine rotor blades. A pressure casement is needed to contain the working fluid as it acts on the turbine stage(s) or the turbine must be fully immersed in the fluid flow (wind turbines). The casing contains and directs the working fluid and, for water turbines, maintains the suction imparted by the draft tube. Francis turbines and most steam turbines use this concept. For compressible working fluids, multiple turbine stages may be used to harness the expanding gas efficiently. Newton's third law describes the transfer of energy for reaction turbines.
Turbine designs will use both these concepts to varying degrees whenever possible. Wind turbines use an airfoil to generate lift from the moving fluid and impart it to the rotor (this is a form of reaction). Wind turbines also gain some energy from the impulse of the wind, by deflecting it at an angle. Crossflow turbines are designed as an impulse machine, with a nozzle, but in low head applications maintain some efficiency through reaction, like a traditional water wheel. Turbines with multiple stages may utilize either reaction or impulse blading at high pressure. Steam Turbines are usually more impulse while Gas Turbines more reaction type designs. At low pressure the operating fluid medium expands in volume for small changes in pressure. Under these conditions (termed Low Pressure Turbines) blading becomes strictly a reaction type design with the base of the blade solely impulse. The reason is due to the effect of the rotation speed for each blade. As the volume increases, the blade height increases, and the base of the blade spins at a slower speed relative to the tip. This change in speed forces a designer to change from impulse at the base, to a high reaction style tip.
The design of steam turbines developed into a science near the end of the 19th century. Better materials allowed the construction of turbine blades that are resistant to corrosion. Charles Curtis developed the multistage turbine in which the blades and disks become progressively larger when the steam expands. Parsons developed in 1894 the ship turbine engine. The slow-revolving turbine consisted of several sections of increasing diameter. High-pressure steam is admitted to the turbine and pressure differences in each section drive the turbine blades. The first ship to be equipped with such a steam turbine, the Turbinia, immediately established a speed record with 31 knots (57.5 km or 35.7 mi per hour). During the early years of the 20th century, most reciprocating steam engines were replaced by steam turbines (or by diesels). Steam turbines can deliver much more power than reciprocating engines and need less maintenance. Steam turbines also supplanted marine steam engines on ships.
A similar evolution took place for large internal combustion engines, mainly driven by the need for lightweight and powerful airplane engines. Most large modern airplanes are now powered by either turboprop or turbojet engines. These turbines are spun by the expansion of jet fuel instead of by the expansion of water into steam.
Subscribe to:
Posts (Atom)