Sunday, January 20, 2008

Construction

Construction

Cores


Laminated steel cores

Transformers for use at power or audio frequencies typically have cores made of high permeability silicon steel.[31] The steel has a permeability many times that of free space, and the core thus serves to greatly reduce the magnetising current, and confine the flux to a path which closely couples the windings.[32] Early transformer developers soon realised that cores constructed from solid iron resulted in prohibitive eddy-current losses, and their designs mitigated this effect with cores consisting of bundles of insulated iron wires.[33] Later designs constructed the core by stacking layers of thin steel laminations, a principle that has remained in use. Each lamination is insulated from its neighbors by a thin non-conducting layer of insulation.[24] The universal transformer equation indicates a minimum cross-sectional area for the core to avoid saturation.

The effect of laminations is to confine eddy currents to highly elliptical paths that enclose little flux, and so reduce their magnitude. Thinner laminations reduce losses,[31] but are more laborious and expensive to construct.[34] Thin laminations are generally used on high frequency transformers, with some types of very thin steel laminations able to operate up to 10 kHz.

One common design of laminated core is made from interleaved stacks of E-shaped steel sheets capped with I-shaped pieces, leading to its name of "E-I transformer".[34] Such a design tends to exhibit more losses, but is very economical to manufacture. The cut-core or C-core type is made by winding a steel strip around a rectangular form and then bonding the layers together. It is then cut in two, forming two C shapes, and the core assembled by binding the two C halves together with a steel strap.[34] They have the advantage that the flux is always oriented parallel to the metal grains, reducing reluctance.

A steel core's remanence means that it retains a static magnetic field when power is removed. When power is then reapplied, the residual field will cause a high inrush current until the effect of the remanent magnetism is reduced, usually after a few cycles of the applied alternating current.[35] Overcurrent protection devices such as fuses must be selected to allow this harmless inrush to pass. On transformers connected to long overhead power transmission lines, induced currents due to geomagnetic disturbances during solar storms can cause saturation of the core and operation of transformer protection devices.[36]

Distribution transformers can achieve low no-load losses by using cores made with low loss high permeability silicon steel or amorphous (non-crystalline) metal alloy. The higher initial cost of the core material is offset over the life of the transformer by its lower losses at light load.

Solid cores

Powdered iron cores are used in circuits (such as switch-mode power supplies) that operate above main frequencies and up to a few tens of kilohertz. These materials combine high magnetic permeability with high bulk electrical resistivity. For frequencies extending beyond the VHF band, cores made from non-conductive magnetic ceramic materials called ferrites are common.[34] Some radio-frequency transformers also have moveable cores (sometimes called 'slugs') which allow adjustment of the coupling coefficient (and bandwidth) of tuned radio-frequency circuits.

Toroidal cores

Toroidal transformers are built around a ring-shaped core, which, depending on operating frequency, is made from a long strip of silicon steel or permalloy wound into a coil, powdered iron, or ferrite.[38] A strip construction ensures that the grain boundaries are optimally aligned, improving the transformer's efficiency by reducing the core's reluctance. The closed ring shape eliminates air gaps inherent in the construction of an E-I core.[39] The cross-section of the ring is usually square or rectangular, but more expensive cores with circular cross-sections are also available. The primary and secondary coils are often wound concentrically to cover the entire surface of the core. This minimises the length of wire needed, and also provides screening to minimize the core's magnetic field from generating electromagnetic interference.

Toroidal transformers are more efficient than the cheaper laminated E-I types for a similar power level. Other advantages compared to E-I types, include smaller size (about half), lower weight (about half), less mechanical hum (making them superior in audio amplifiers), lower exterior magnetic field (about one tenth), low off-load losses (making them more efficient in standby circuits), single-bolt mounting, and greater choice of shapes. The main disadvantages are higher cost and limited rating.

Ferrite toroidal cores are used at higher frequencies, typically between a few tens of kilohertz to a megahertz, to reduce losses, physical size, and weight of switch-mode power supplies. A drawback of toroidal transformer construction is the higher cost of windings. As a consequence, toroidal transformers are uncommon above ratings of a few kVA. Small distribution transformers may achieve some of the benefits of a toroidal core by splitting it and forcing it open, then inserting a bobbin containing primary and secondary windings.

Air cores

A physical core is not an absolute requisite and a functioning transformer can be produced simply by placing the windings in close proximity to each other, an arrangement termed an "air-core" transformer. The air which comprises the magnetic circuit is essentially lossless, and so an air-core transformer eliminates loss due to hysteresis in the core material.[9] The leakage inductance is inevitably high, resulting in very poor regulation, and so such designs are unsuitable for use in power distribution.[9] They have however very high bandwidth, and are frequently employed in radio-frequency applications,[40] for which a satisfactory coupling coefficient is maintained by carefully overlapping the primary and secondary windings.

Windings

The conducting material used for the windings depends upon the application, but in all cases the individual turns must be electrically insulated from each other to ensure that the current travels throughout every turn.[12] For small power and signal transformers, in which currents are low and the potential difference between adjacent turns is small, the coils are often wound from enamelled magnet wire, such as Formvar wire. Larger power transformers operating at high voltages may be wound with copper rectangular strip conductors insulated by oil-impregnated paper and blocks of pressboard.

High-frequency transformers operating in the tens to hundreds of kilohertz often have windings made of braided litz wire to minimize the skin-effect and proximity effect losses.[12] Large power transformers use multiple-stranded conductors as well, since even at low power frequencies non-uniform distribution of current would otherwise exist in high-current windings.[41] Each strand is individually insulated, and the strands are arranged so that at certain points in the winding, or throughout the whole winding, each portion occupies different relative positions in the complete conductor. The transposition equalizes the current flowing in each strand of the conductor, and reduces eddy current losses in the winding itself. The stranded conductor is also more flexible than a solid conductor of similar size, aiding manufacture.[41]

For signal transformers, the windings may be arranged in a way to minimise leakage inductance and stray capacitance to improve high-frequency response. This can be done by splitting up each coil into sections, and those sections placed in layers between the sections of the other winding. This is known as a stacked type or interleaved winding.

Both the primary and secondary windings on power transformers may have external connections, called taps, to intermediate points on the winding to allow selection of the voltage ratio. The taps may be connected to an automatic on-load tap changer for voltage regulation of distribution circuits. Audio-frequency transformers, used for the distribution of audio to public address loudspeakers, have taps to allow adjustment of impedance to each speaker. A center-tapped transformer is often used in the output stage of an audio power amplifier in a push-pull circuit. Modulation transformers in AM transmitters are very similar.

Certain transformers have the windings protected by epoxy resin. By impregnating the transformer with epoxy under a vacuum, air spaces within the windings are replaced with epoxy, thus sealing the windings and helping to prevent the possible formation of corona and absorption of dirt or water. This produces transformers more suited to damp or dirty environments, but at increased manufacturing cost.

Coolant

Extended operation at high temperatures is particularly damaging to transformer insulation.[43] Small signal transformers do not generate significant heat and need little consideration given to their thermal management. Power transformers rated up to a few kVA can be adequately cooled by natural convective air-cooling, sometimes assisted by fans.[44] Specific provision must be made for cooling high-power transformers, the larger physical size requiring careful design to transport heat from the interior. Some power transformers are immersed in specialized transformer oil that acts both as a cooling medium, thereby extending the lifetime of the insulation, and helps to reduce corona discharge.[45] The oil is a highly refined mineral oil that remains stable at high temperatures so that internal arcing will not cause breakdown or fire; transformers to be used indoors must use a non-flammable liquid.[4]

The oil-filled tank often has radiators through which the oil circulates by natural convection; large transformers employ forced circulation of the oil by electric pumps, aided by external fans or water-cooled heat exchangers.[45] Oil-filled transformers undergo prolonged drying processes to ensure that the transformer is completely free of water vapor before the cooling oil is introduced. This helps prevent electrical breakdown under load. Oil-filled transformers may be equipped with Buchholz relays, which detect gas evolved during internal arcing and rapidly de-energize the transformer to avert catastrophic failure.[35]

Polychlorinated biphenyl has properties that once favored its use as a coolant, though concerns over its toxicity and environmental persistence led to a widespread ban on its use.[46] Today, non-toxic, stable silicone-based oils, or fluorinated hydrocarbons may be used where the expense of a fire-resistant liquid offsets additional building cost for a transformer vault.[43][4]

Some "dry" transformers are enclosed in pressurized tanks and cooled by nitrogen or sulphur hexafluoride gas.[43] To ensure that the gas does not leak and its insulating capability deteriorate, the transformer casing is completely sealed. Experimental power transformers in the 2 MVA range have been built with superconducting windings which eliminates the copper losses, but not the core steel loss. These are cooled by liquid nitrogen or helium.[47]

Terminals

Very small transformers will have wire leads connected directly to the ends of the coils, and brought out to the base of the unit for circuit connections. Larger transformers may have heavy bolted terminals, bus bars or high-voltage insulated bushings made of polymers or porcelain. A large bushing can be a complex structure since it must provide careful control of the electric field gradient without letting the transformer leak oil.[48]

History

The transformer principle was demonstrated in 1831 by Michael Faraday, although he used it only to demonstrate the principle of electromagnetic induction and did not foresee its practical uses. Viable designs would not appear until the 1880s.[49] Within less than a decade, the transformer was instrumental during the "War of Currents" in seeing alternating current systems triumph over their direct current counterparts, a position in which they have remained dominant.

[49] Russian engineer Pavel Yablochkov in 1876 invented a lighting system based on a set of induction coils, where primary windings were connected to a source of alternating current and secondary windings could be connected to several "electric candles". The patent claimed the system could "provide separate supply to several lighting fixtures with different luminous intensities from a single source of electric power". Evidently, the induction coil in this system operated as a transformer.

Lucien Gaulard and John Dixon Gibbs, who first exhibited a device with an open iron core called a 'secondary generator' in London in 1882 and then sold the idea to American company Westinghouse.[33] They also exhibited the invention in Turin in 1884, where it was adopted for an electric lighting system.

William Stanley, an engineer for Westinghouse, built the first commercial device in 1885 after George Westinghouse had bought Gaulard and Gibbs' patents. The core was made from interlocking E-shaped iron plates. This design was first used commercially in 1886.[49] Hungarian engineers Zipernowsky, Bláthy and Déri from the Ganz company in Budapest created the efficient "ZBD" closed-core model in 1885 based on the design by Gaulard and Gibbs.[50] Their patent application made the first use of the word "transformer".[33] Russian engineer Mikhail Dolivo-Dobrovolsky developed the first three-phase transformer in 1889. In 1891 Nikola Tesla invented the Tesla coil, an air-cored, dual-tuned resonant transformer for generating very high voltages at high frequency. Audio frequency transformers (at the time called repeating coils) were used by the earliest experimenters in the development of the telephone. Many others have patents on transformers.

While new technologies have made transformers in some electronics applications obsolete, transformers are still found in many electronic devices. Transformers are essential for high voltage power transmission, which makes long distance transmission economically practical.

No comments: